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ANNOTATION

This work contains: introduction, 3 chapters, conclusions, list of references,
which contains 41 references. Total work size — 24 pages (excluding appendices and
list of references). Contains 1 table, 9 pictures.

Relevance

The generation of accurate and reliable aircraft trajectories plays a crucial role
in modern aviation, as it directly impacts the efficiency, safety, and sustainability of air
transportation systems. With the continuous growth of global air traffic, airspace
management requires advanced trajectory prediction methods to prevent conflicts,
optimize routes, and reduce delays. Moreover, trajectory generation supports the
integration of emerging aviation technologies, including unmanned aerial vehicles
(UAVs), urban air mobility platforms, and next-generation air traffic management

systems.
Purpose of the Work

Development of a novel approach for generating aircraft flight trajectories,
integrating multiple methodologies to more accurately capture the complex dynamics

and constraints of real-world flight.
Tasks

1. comprehensive analysis of existing approaches to aircraft trajectory generation,
highlighting their strengths and limitations;

2. investigation of modern models and methodologies applied to aircraft trajectory
generation,;

3. design and development of a custom hybrid model tailored for aircraft trajectory
generation tasks;

4. pre-processing and refinement of the aircraft trajectory dataset to ensure data
quality and consistency;

5. training and optimization of the proposed model on the prepared dataset;

6. evaluation and analysis of training outcomes, including performance metrics and

model behavior;



7. assessment of model performance under diverse scenarios, with emphasis on

adaptability and robustness.
Method

This paper presents a method for generating aircraft trajectories that integrates
deep learning with aerodynamic principles to ensure physically consistent predictions.
The model is designed to capture the temporal patterns of aircraft motion and produce
smooth, realistic trajectories through a multi-level approach that combines historical
flight data with strict physical constraints, including speed, acceleration, and motion
smoothness. The model was trained with a multi-component loss function that
considers derivatives of multiple orders — position, velocity, acceleration, and jerk,
enabling it to learn full flight dynamics and generate trajectories consistent with

physical constraints and realistic flight scenarios.
Key words

air traffic, machine learning, deep learning, trajectory generation, transformer,

cross-attention, physics-based approach.
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CHAPTER 1 INTRODUCTION
1.1 Motivation and relevance
Currently, the main achievements in the application of Al in the field of air
transport are due to the development of new technologies, the availability of powerful
computing resources, and the ability to use large training samples [1-4]. Modern Al
uses a combination of new neural network architectures and advanced methods of
machine/deep/semi-supervised/transfer learning, which significantly improves the

quality of processing different types of data [5-11].

Today, artificial intelligence allows for the comprehensive solution of a huge
range of tasks with high accuracy and speed. First and foremost, this applies to flight

route optimization, which ultimately leads to reduced fuel consumption.

Air traffic management, covering route/area control, approach control, and

airport control.

A lot of researches are being conducted in the field of trajectory prediction based
on machine learning [12, 13] and its generation [14-17], where learning-based models
generate or refine continuous arrival trajectories that match the planned sequence,
minimizing deviations and ensuring energy efficiency (e.g., a continuous descent
trajectory can save fuel and reduce emissions).

The relevance of aircraft trajectory generation research lies in its direct impact
on the efficiency, safety, and sustainability of air transport. Accurate trajectory
generation enables better planning and coordination in crowded airspace, reduces fuel
consumption and emissions, minimizes delays, making it a crucial area of study in

modern aviation.

1.2 Analysis of existing methods

Aircraft trajectory generation has evolved significantly over the past decades,
with research approaches broadly categorized into model-driven and data-driven
methodologies. Each approach presents distinct advantages and limitations that have

shaped the current landscape of trajectory prediction systems.



1.2.1 Model-Driven Approaches

Traditional model-driven methods generate aircraft trajectories by leveraging
kinetic and kinematic models with various parameters including initial aircraft states,
performance coefficients, weather conditions, and flight intentions [18, 19]. These
physics-based approaches inherently guarantee flyability since they are grounded in
aerodynamic principles and aircraft performance constraints [20]. However, they face

significant challenges in balancing fidelity and diversity requirements.

Early model-driven systems adopted free-flight concepts to enhance trajectory
diversity by allowing aircraft to deviate from published flight routes [21, 22]. While
this approach successfully generated varied trajectories, it resulted in poor fidelity as
the synthetic paths often exhibited distributions that differed substantially from actual
operational data. To address these concerns, subsequent research focused on
optimization-based methods that search for optimal flight paths among predefined
routes, including Standard Terminal Arrival Routes and associated deviation patterns
[23]. Although these methods improved fidelity, they suffered from limited diversity
due to the long-tail effect inherent in route selection, leading to homogenized trajectory

generation that failed to capture the full spectrum of real-world operations.

1.2.2 Optimization-Based Approaches

Optimization frameworks have been widely employed to bridge the gap between
flyability and operational realism. Techniques such as dynamic programming, mixed-
integer linear programming, and evolutionary algorithms have been utilized to compute
fuel-optimal, time-optimal, or conflict-free trajectories [24, 25]. These approaches are
particularly effective in structured environments, where clear performance objectives,
such as fuel efficiency or minimal delay, can be formalized as cost functions subject to
operational constraints. Typical constraints include separation minima, airspace
structure, weather avoidance, and compliance with Standard Instrument Departures
(SIDs) or Standard Terminal Arrival Routes (STARs). Multi-objective optimization has

also been introduced to balance competing goals (e.g., minimizing emissions while
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reducing conflict risk), further aligning generated trajectories with environmental and

operational needs.

Despite these advantages, optimization-based approaches face notable
challenges. Their reliance on heavy computation makes them less suitable for large-
scale generation or real-time applications, especially when modeling complex
environments with multiple interacting aircraft. Furthermore, their outputs are often
deterministic and concentrated around optimal solutions, which limits diversity and
fails to capture the variability observed in real-world operations. Attempts to introduce
randomness or relax constraints to enhance diversity often compromise fidelity or
violate feasibility. As a result, while optimization provides strong guarantees for
flyability and compliance, it struggles to simultaneously ensure scalability and realism

in diverse traffic scenarios.

1.2.3 Data-Driven Methods

The emergence of machine learning has revolutionized trajectory generation,
particularly in ground transportation applications [26, 27]. These successes have
motivated researchers to extend data-driven approaches to aircraft trajectory
generation. Early implementations utilized traditional neural architectures including
Multilayer Perceptrons [28], Long Short-Term Memory networks [29], and
Convolutional Neural Networks [30] to extract spatial-temporal features from
historical trajectory data.

More sophisticated generative models have since been developed, incorporating
Variational Auto-Encoders (VAEs) [31] and Generative Adversarial Networks (GANs)
to synthesize novel trajectories. Recent aviation-specific implementations include
VampPrior TCVAE [32], ConvlD-GAN [33], Gaussian mixture model-based
generators [34], and Principal Component Analysis approaches [35]. These methods
demonstrate improved fidelity and diversity compared to traditional model-driven
approaches by incorporating controllers' operational experience extracted from

historical data.



1.2.4 Reinforcement Learning Approaches

Reinforcement learning (RL) has emerged as a promising direction for trajectory
generation, particularly in environments where sequential decision-making and
adaptation to dynamic conditions are required. In RL-based frameworks, the aircraft is
modeled as an agent that learns optimal maneuvers through interaction with a simulated
air traffic environment. Reward functions can encode efficiency, safety, and
compliance with air traffic regulations [36, 37]. This formulation allows RL to naturally
capture the trade-offs between conflicting objectives, such as minimizing fuel

consumption while avoiding conflicts or adhering to sector capacity constraints.

Several RL paradigms have been investigated in this context. Value-based
methods such as Q-learning [38] have been applied to simplified two-dimensional
navigation problems, while policy gradient methods and actor—critic architectures have
been adopted for continuous control tasks relevant to aircraft dynamics. More advanced
approaches leverage deep reinforcement learning (DRL) [39], where deep neural
networks approximate the value or policy functions, enabling the handling of high-
dimensional state spaces that include weather fields, air traffic density, and aircraft
performance envelopes. Multi-agent reinforcement learning (MARL) [40] has also
gained attention, with multiple aircraft modeled as interacting agents that must

coordinate to avoid conflicts while maintaining efficiency.

Despite these advantages, RL-based methods face several critical challenges.
Training typically requires millions of simulated interactions, making them
computationally intensive and dependent on high-fidelity simulators. Moreover, the
resulting policies may overfit to the training environment and fail to generalize under
real-world uncertainties, such as unexpected controller interventions, varying weather
patterns, or unmodeled aircraft dynamics. The design of reward functions is another
key limitation: overly simplistic rewards can lead to unrealistic or unsafe behaviors,
while overly complex reward shaping may hinder convergence. Safety and
explainability remain significant concerns, as RL policies often behave like black

boxes, making it difficult to certify them for safety-critical domains such as aviation.
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Nevertheless, reinforcement learning provides a flexible foundation for
trajectory generation, particularly when combined with domain knowledge or
hybridized with physics-based models. Integrating explicit flight dynamics constraints
into the training loop, or using imitation learning to pre-train policies from operational
data, are promising directions that could help RL achieve more reliable and physically

consistent trajectory generation.

1.3 Current limitations

Although a wide range of methods have been explored, several fundamental
limitations remain across existing approaches. Model-driven and optimization-based
frameworks, while ensuring flyability, often lack diversity and fail to replicate the
operational complexity of real-world trajectories. Their deterministic nature tends to
produce homogenized paths that do not capture the variability introduced by human

controllers, weather deviations, and airspace constraints.

On the other hand, data-driven and reinforcement learning approaches excel at
capturing statistical patterns from historical operations but frequently generate
trajectories that violate physical or operational constraints. Their reliance on
differentiable loss functions is a key bottleneck, as many flight performance and safety
requirements are inherently non-differentiable. Consequently, generated trajectories
may compromise feasibility despite appearing realistic. Furthermore, probabilistic
models of deviation are insufficient to represent the structured and rule-based nature of
air traffic control interventions, which are deterministic rather than purely stochastic.

As a result, current research struggles to simultaneously achieve fidelity,
diversity, flyability, and scalability-highlighting the need for hybrid approaches that
integrate the strengths of physics-based models, data-driven learning, and operational

knowledge.
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1.4 Proposed direction

In this work, we aim to overcome the above limitations by introducing a hybrid
trajectory generation framework that combines the strengths of deep learning with the
guarantees of physically consistent modeling. Specifically, we integrate physics-based
constraints directly into the learning pipeline, ensuring that generated trajectories
remain operationally feasible while still benefiting from the flexibility and pattern
recognition capabilities of modern neural networks. This design allows the model to
respect aerodynamic principles and flight performance limits, while simultaneously
learning realistic variations from historical operational data. By embedding physical
correctness into the generative process itself, our approach seeks to achieve a more
balanced trade-off between fidelity, diversity, flyability, and scalability than existing
methods.

Unlike conventional data-driven methods that rely on post-processing
corrections or differentiable approximations of constraints, our framework enforces
physical feasibility during the generation phase. This eliminates the need for heuristic
adjustments or surrogate models and enables the direct incorporation of non-
differentiable acrodynamic rules into the trajectory synthesis process. At the same time,
the use of deep generative models ensures that the system can capture complex patterns
of controller interventions, route deviations, and operational variability that purely

model-driven techniques fail to represent.
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CHAPTER 2 THEORETICAL METHOD

2.1 Dataset description

The dataset employed for training our model is ATFMTraj (Aircraft Trajectory
Classification Data for Air Traffic Management) [41]. ATFMTraj provides a large-scale
collection of flight trajectory data specifically curated to support research in air traffic
management, trajectory prediction, and classification tasks. It contains approximately
70,000 distinct aircraft trajectories, each with an average duration of 1200 time steps,
sampled at a frequency of one second. This high temporal resolution ensures that the
dataset captures fine-grained variations in aircraft dynamics and operational patterns.

Examples of dataset trajectories illustrated on Fig. 1.

Aircraft Trajectories (3D View) Aircraft Trajectories (Top View)
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Fig. 1. Examples of dataset trajectories in 3d space and projected on 2d space

The trajectories were collected from a diverse range of airports across the globe,
including major hubs such as Incheon International Airport (ICN), Stockholm Arlanda
Airport (ARN), and Zurich Airport (ZRH). By encompassing different airspaces, traffic
densities, and operational environments, the dataset introduces substantial variability

in flight paths. This diversity enhances the generalizability of models trained on
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ATFMTraj, enabling them to learn not only common movement patterns but also rare

or complex behaviors observed in real-world operations.

To ensure consistency and usability, the dataset undergoes a rigorous
preprocessing pipeline. First, incomplete or corrupted trajectories are discarded. The
remaining flight paths are then transformed from geographic coordinates (latitude,
longitude, altitude) into a local East-North—Up (ENU) Cartesian coordinate system,
bounded by an airport-specific radius. Each trajectory is resampled at 1-second
intervals, and noise is reduced through outlier removal and Savitzky—Golay filtering to
obtain smoother and more physically consistent paths. Afterward, trajectories are
normalized, bringing all values into a comparable scale across airports.

For our specific task of aircraft trajectory generation, we further adapt the dataset
to match the requirements of our model. Instead of using the full one-second frequency,
trajectories are downsampled to one point every five seconds, which reduces excess
points while retaining essential motion dynamics. In addition, longer sequences are
sliced into smaller trajectory segments that are more suitable for model training,
ensuring that the inputs remain consistent with the design and capacity of our

generation framework.
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2.2 General structure information
The core architecture has structure, designed to capture temporal patterns and

ensure physically realistic predictions Fig. 2.
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Fig. 2. General model structure

What makes our approach unique is the integration of learned patterns with
physical constraints throughout the entire pipeline. While the model learns complex
relationships from data, it simultaneously enforces velocity limits, acceleration
constraints, and smoothness requirements that reflect real aircraft capabilities. By
combining data-driven learning with physics-based validation, we achieve predictions

that are both accurate and operationally feasible for real-world aviation applications.



14

2.3 Feature extraction

Aircraft movement follows specific patterns related to velocity, acceleration, and
direction changes, so our preprocessing pipeline extracts these kinematic properties
and creates rich feature representations that help the model understand the underlying
physics of flight.

The model begins by transforming raw three-dimensional coordinates into a
comprehensive 16-dimensional feature space that captures the essential physics of
aircraft motion Fig. 3. Rather than expecting the neural network to learn motion
dynamics from scratch, this approach provides it with physically meaningful features

from the outset.
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Fig. 3. Visualization of data and feature engineering
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The feature extractor computes multiple derivatives of position to capture
different aspects of motion. Starting with the original x, y, and z coordinates, it
calculates velocity using central differences. This same approach extends to
acceleration and jerk, the third derivative that measures how smoothly acceleration

changes over time.

Beyond these derivatives, the extractor computes specialized aviation-relevant
features. Speed represents the magnitude of the velocity vector, while heading angle
captures the horizontal direction of flight. The climb angle indicates whether the
aircraft is ascending or descending relative to the horizontal plane. Together, these
features provide a multi-scale temporal representation of motion, from instantaneous

position to the rate of acceleration change.

The use of central differences throughout the feature extraction process ensures
numerical stability and reduces noise in the computed derivatives. This is particularly
important for aircraft trajectories, where measurement noise can significantly affect
derivative calculations. By starting with physics-aware features, the model gains an
immediate advantage in understanding motion patterns. Also, we handle the fact that
velocity and acceleration cannot be computed at trajectory boundaries by using zero-
padding, ensuring consistent input dimensions while explicitly marking these boundary

conditions for the model.

2.4 Encoder structure

After adding new features to input data we are using encoder to further process
it. Rather than treating trajectory generation as a simple sequence-to-sequence
problem, we recognize that past and future segments contain fundamentally different
types of information that require specialized processing before they can be effectively
combined.

The encoder employs separate Gated Recurrent Unit networks for past and future
sequences, allowing each to specialize in its temporal direction. GRUs were chosen

over simpler RNNs for their superior gradient flow properties and over transformers
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for their computational efficiency with sequential data. These parallel encoders process

their respective sequences independently before engaging in sophisticated information

exchange. Fig. 4.
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Fig. 4. Trajectory encoding process

The key innovation comes through multi-layer cross-attention mechanisms. In
these layers, the past trajectory representation attends to the future trajectory and vice
versa, enabling the model to identify relationships between where the aircraft was and

where it will be. This bidirectional attention is applied twice, with each iteration
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followed by feed-forward networks and layer normalization, creating increasingly

refined representations that capture complex temporal dependencies.

Learnable position embeddings enhance the model's understanding of temporal
relationships within each sequence. These learned embeddings can adapt to the specific
temporal patterns present in aircraft trajectories, such as the characteristic time scales

of different maneuvers.

The encoder pays special attention to boundary conditions-the points where the
predicted segment must connect to the known past and future. It extracts the last two
points from the past trajectory and the first two from the future, capturing both position
and velocity information at these critical junctions. A dedicated fusion network
combines these boundary features, ensuring the model maintains awareness of the

connection constraints throughout processing.

2.5 Physics-constrained decoder
Unlike traditional sequence decoders that generate outputs based solely on
learned patterns, our decoder integrates aerodynamic principles and operational

constraints throughout the generation process.

The decoder component represents a critical stage in the trajectory prediction
pipeline, transforming the abstract encoded context representation into a smooth,
physically plausible trajectory that seamlessly connects the past and future segments.
This transformation is achieved through a sophisticated multi-stage process that
strategically combines classical analytical methods with modern learned components,

balancing mathematical guarantees with data-driven flexibility Fig. 5.
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Fig. 5. Structure of model decoder

The first step of trajectory generation relies on cubic Hermite spline
interpolation, a well-established mathematical technique from numerical analysis. This
approach creates a smooth parametric curve between the end point of the past trajectory
and the beginning point of the future trajectory, leveraging not just the spatial positions
at these critical boundary points but also the instantaneous velocities.

The choice of Hermite splines is particularly advantageous because they provide
mathematical guarantees that both position and velocity change continuously without
abrupt jumps or discontinuities. This property is a critical requirement for realistic
aircraft motion modeling, as real aircraft cannot instantaneously change velocity due
to physical constraints like inertia and aerodynamic forces.

The cubic formulation provides sufficient flexibility to match both position and
velocity boundary conditions while maintaining computational efficiency, striking an
optimal balance between complexity and expressiveness.

While the Hermite spline provides a mathematically sound baseline, it cannot
capture the complex, scenario-specific patterns present in real flight data. To address
this limitation, a Gated Recurrent Unit (GRU)-based trajectory generator operates on
top of the analytical foundation to produce context-aware adjustments.

This recurrent neural network processes the encoded context representation
along with explicit boundary condition information to generate trajectory

modifications that reflect the specific characteristics of the current flight scenario.
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This design choice is crucial: it maintains the inherent smoothness and physical
plausibility of the base Hermite trajectory while adding the necessary fine-grained
adjustments needed to improve prediction accuracy and capture real-world flight

patterns that pure analytical methods would miss.

The model incorporates multiple complementary smoothing techniques to
ensure that the generated trajectories remain physically plausible and free from
artifacts. We use filter on the trajectory by computing weighted averages of each point
with its temporal neighbors, effectively reducing high-frequency noise and oscillations

that could arise from the neural network components.

Unlike simple moving averages, this filtering approach is designed to preserve
important features like peaks and overall trajectory shape while suppressing unrealistic
fluctuations. Additionally, the decoder implements explicit acceleration constraints that
enforce physically realistic limits on the rate of velocity change. These constraints
prevent the generation of impossible maneuvers that would exceed the performance
envelope of real aircraft-such as instantaneous direction changes or excessive g-forces-
ensuring that all predicted trajectories respect fundamental physical laws and aircraft
operational limitations.

To ensure proper geometric connection with the known future trajectory
segment, the decoder applies a sophisticated soft endpoint constraint mechanism.
Rather than rigidly forcing exact endpoint matching through hard constraints-which
could create artificial discontinuities or unrealistic sharp corrections near the boundary-
the system gradually corrects the trajectory toward the target endpoint using a smooth
linear interpolation of the accumulated position error over the predicted time window.

This approach also implements that early in the predicted segment, the trajectory
has more freedom to deviate based on learned patterns, but as it approaches the
boundary with the future segment, corrections become progressively stronger. This
gradual blending maintains overall smoothness and physical realism while

simultaneously ensuring that the predicted segment connects properly to the known
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future, avoiding visible seams or discontinuities that would compromise the quality

and usability of the complete trajectory reconstruction.

2.6 Loss function

Defining loss function is crucial element of our trajectory generation framework.
Instead of relying solely on a mean squared error (MSE) between generated and
ground-truth trajectories. we introduce a multi-objective loss function, sophisticated
loss function to ensure the model learns to generate physically realistic trajectories.

This multi-component loss function supervises the model at different scales of motion.

Ltotal = Lpos + /11Lve1 + AZLacc + A3Ljerk

where L, — weighted MSE loss; L, — velocity loss; £, — acceleration loss;

Lie — jerk penalty; A; — weights.

The primary component measures position accuracy through mean squared error
between predicted and ground truth trajectories. However, matching positions alone
isn't sufficient for smooth, realistic motion. The loss function therefore includes
velocity matching with a weight of 0.3, ensuring the model learns correct speed profiles
throughout the trajectory. Acceleration matching, weighted at 0.2, maintains proper
dynamics and helps the model understand how aircraft change speed and direction.

Furthermore, the loss includes a jerk penalty weighted at 0.1. By penalizing large
values of jerk, the training process naturally encourages the generation of smooth
trajectories. This reflects the physical reality that aircraft, due to their mass and control
system limitations, cannot change acceleration instantaneously.

This multi-scale supervision provides training signals at different derivative
orders, helping the model learn the full dynamics of motion rather than just position
sequences. The carefully chosen weights balance these objectives, preventing any
single component from dominating while ensuring all aspects of trajectory quality are

maintained.
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CHAPTER 3 PRACTICAL RESULTS
3.1 Training parameters
For the training process, the dataset was divided into three subsets: 70% for
training, 20% for validation, and 10% for testing. This split ensured that the model had
sufficient data for learning while still being evaluated on unseen samples during and
after training. The training was conducted for a total of 70 epochs, allowing the model
to gradually refine its parameters and improve predictive accuracy.
The training configuration included the following parameters:
e Batch size: 64.
e Learning rate decay: 0.1.

e Optimizer: Adam with parameters (weight decay=; ; ).

During the training phase, the model’s performance was evaluated on the
validation subset at the end of each epoch. This continuous monitoring allowed us to
detect overfitting or underfitting trends and ensured that the model’s generalization

ability was preserved.

3.2 Model results and results analysis
Fig. 6 demonstrates the results of trajectory generation for several representative

examples, illustrating how the proposed model captures the overall flight dynamics and

produces realistic trajectories.
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Fig. 6. Examples of generated trajectories, projected on 2d space

In this image you can see examples of trajectory prediction of our model. Each
column refers to one example, projected on every possible 2d plane. The blue line
represents the past segment of the trajectory, the green line corresponds to future
segment, the orange line denotes the model prediction, and the red line indicates the
true trajectory for comparison.

Our model produces reasonably accurate predictions. While it does not replicate
the target path with complete precision, it generates its own smooth and realistic
trajectories that remain close to the ground truth, which was our primary task. This
behavior is particularly valuable, since exact replication of future motion is neither
feasible nor always desirable due to inherent stochasticity in real-world trajectories.

Moreover, the generated paths exhibit continuity and physical plausibility,
avoiding unrealistic jumps or discontinuities that are common in naive approaches. The
slight deviations from the true trajectory can also be interpreted as the model’s ability
to generalize rather than memorize training examples. Overall, these results

demonstrate that the model captures both short-term dynamics and long-term motion



23

trends effectively, producing trajectories that are consistent, feasible, and aligned with

actual aircraft behavior.

Another, more distinct example of the model’s capabilities is its ability to
generate entirely new paths that do not simply mirror the ground truth but still maintain
realism and adherence to physical constraints Fig. 7. In such cases, model produces
smooth and coherent trajectory that could plausibly represent an alternative evolution
of the aircraft’s movement. This is particularly important in scenarios where future
trajectories are inherently uncertain, as the model can propose multiple feasible

continuations rather than overfitting to a single deterministic path.
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Fig. 7. Examples of model generating completely new trajectories, projected on 2d

space

However, despite these strengths, certain limitations remain. In some instances,
the model tends to produce unnecessarily complex trajectories Fig. 8. These cases
suggest that while the physics constraints embedded in the architecture mitigate most

unrealistic behaviors, additional regularization or refinement could further reduce such
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artifacts. Addressing this challenge is essential for improving reliability in safety-

critical applications such as air traffic management.
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Fig. 8. Examples of model unnecessarily complex trajectories, projected on 2d space

Also, to evaluate objective quality of generated trajectories, we evaluate our
model on test dataset and compute metrics that include confidence scores of the model,

Mean Square Error and Mean Absolute Error. Table 1 illustrates this metrics.



25

Table 1. Metrics values for test dataset.

Metric Value

Mean Squared Error 0.000004
Mean Absolute Error 0.001211
Root Mean Squared Error 0.002042

The metrics confirm the effectiveness of the developed model for aircraft
trajectory prediction. Despite fluctuations in some specific cases, the model
consistently generates trajectories that remain within acceptable operational limits.
This indicates that the approach not only achieves high accuracy on average but also
maintains robustness under varying conditions. The stability of results across diverse
scenarios suggests strong generalization ability, which is crucial for practical

deployment in real-world air traffic management systems.

3.3 Model testing in new environment
We also explored a more challenging setting by combining past and future
segments originating from different trajectories and using them as input to generate

completely new trajectories Fig. 9.
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Fig. 9. Examples of model generating trajectories for different dataset paths, projected

on 2d space

The model still managed to generate coherent transitions between mismatched
segments, producing trajectories that different trajectories into a consistent motion
path. This outcome underscores the robustness and adaptability of the approach,
highlighting its potential for trajectory generation in more complex operational

scenarios.
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CONCLUSION

In this work, we presented a hybrid framework for aircraft trajectory generation
that integrates data-driven learning with physics-based constraints. Unlike traditional
methods that either oversimplify flight dynamics or rely solely on black-box neural
models, our approach leverages the strengths of both domains. By embedding
aerodynamic principles, velocity and acceleration constraints, and smoothness
requirements directly into the pipeline, the proposed model generates trajectories that

are not only accurate but also operationally feasible.

The key innovation lies in the seamless integration of multiple specialized
components: separate transformer encoders for past and future trajectory segments,
cross-modal attention mechanisms for temporal relationship modeling, and a physics-
constrained decoder with multiple prediction heads. This architecture enables the
model to capture complex flight dynamics while maintaining adherence to fundamental
physical constraints including velocity limits, acceleration bounds, and trajectory
smoothness requirements.

The experimental evaluation on the ATFMTraj dataset demonstrated that our
method consistently produces smooth, continuous, and physically plausible paths, even
in complex and uncertain scenarios. The results highlight the model’s ability to
generalize beyond exact replication, offering realistic alternatives when deterministic
predictions are neither possible nor desirable. Importantly, the framework maintains
robustness across diverse flight conditions, reinforcing its suitability for safety-critical
applications such as air traffic management and decision support systems.

Dataset of 70,000 trajectories from airports worldwide was used to train our
model. Validation demonstrates the effectiveness of our approach. The model achieves
quantitative performance with MSE of 0.000004 and MAE of 0.001211 and RMSE
0.002042. Visual assessment confirms that generated trajectories exhibit realistic flight

patterns and smooth transitions between past and future segments.

While the approach shows strong performance, challenges remain in further

reducing overly complex outputs and optimizing for efficiency in large-scale
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deployments. Future work will focus on refining regularization strategies, exploring
multi-modal prediction to handle uncertainty more explicitly, and integrating real-time
operational constraints. With these extensions, the framework has the potential to
become a core component in next-generation air traffic management systems,

supporting safer, more efficient, and more reliable aviation operations.
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