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ANNOTATION 

This work contains: introduction, 3 chapters, conclusions, list of references, 

which contains 41 references. Total work size – 24 pages (excluding appendices and 

list of references). Contains 1 table, 9 pictures. 

Relevance 

The generation of accurate and reliable aircraft trajectories plays a crucial role 

in modern aviation, as it directly impacts the efficiency, safety, and sustainability of air 

transportation systems. With the continuous growth of global air traffic, airspace 

management requires advanced trajectory prediction methods to prevent conflicts, 

optimize routes, and reduce delays. Moreover, trajectory generation supports the 

integration of emerging aviation technologies, including unmanned aerial vehicles 

(UAVs), urban air mobility platforms, and next-generation air traffic management 

systems. 

Purpose of the Work 

Development of a novel approach for generating aircraft flight trajectories, 

integrating multiple methodologies to more accurately capture the complex dynamics 

and constraints of real-world flight. 

Tasks 

1. comprehensive analysis of existing approaches to aircraft trajectory generation, 

highlighting their strengths and limitations; 

2. investigation of modern models and methodologies applied to aircraft trajectory 

generation; 

3. design and development of a custom hybrid model tailored for aircraft trajectory 

generation tasks; 

4. pre-processing and refinement of the aircraft trajectory dataset to ensure data 

quality and consistency; 

5. training and optimization of the proposed model on the prepared dataset; 

6. evaluation and analysis of training outcomes, including performance metrics and 

model behavior; 
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7. assessment of model performance under diverse scenarios, with emphasis on 

adaptability and robustness. 

Method 

This paper presents a method for generating aircraft trajectories that integrates 

deep learning with aerodynamic principles to ensure physically consistent predictions. 

The model is designed to capture the temporal patterns of aircraft motion and produce 

smooth, realistic trajectories through a multi-level approach that combines historical 

flight data with strict physical constraints, including speed, acceleration, and motion 

smoothness. The model was trained with a multi-component loss function that 

considers derivatives of multiple orders – position, velocity, acceleration, and jerk, 

enabling it to learn full flight dynamics and generate trajectories consistent with 

physical constraints and realistic flight scenarios. 

Key words 

air traffic, machine learning, deep learning, trajectory generation, transformer, 

cross-attention, physics-based approach. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation and relevance 

Currently, the main achievements in the application of AI in the field of air 

transport are due to the development of new technologies, the availability of powerful 

computing resources, and the ability to use large training samples [1-4]. Modern AI 

uses a combination of new neural network architectures and advanced methods of 

machine/deep/semi-supervised/transfer learning, which significantly improves the 

quality of processing different types of data [5-11]. 

Today, artificial intelligence allows for the comprehensive solution of a huge 

range of tasks with high accuracy and speed. First and foremost, this applies to flight 

route optimization, which ultimately leads to reduced fuel consumption. 

Air traffic management, covering route/area control, approach control, and 

airport control. 

A lot of researches are being conducted in the field of trajectory prediction based 

on machine learning [12, 13] and its generation [14-17], where learning-based models 

generate or refine continuous arrival trajectories that match the planned sequence, 

minimizing deviations and ensuring energy efficiency (e.g., a continuous descent 

trajectory can save fuel and reduce emissions). 

The relevance of aircraft trajectory generation research lies in its direct impact 

on the efficiency, safety, and sustainability of air transport. Accurate trajectory 

generation enables better planning and coordination in crowded airspace, reduces fuel 

consumption and emissions, minimizes delays, making it a crucial area of study in 

modern aviation. 

 

1.2 Analysis of existing methods 

Aircraft trajectory generation has evolved significantly over the past decades, 

with research approaches broadly categorized into model-driven and data-driven 

methodologies. Each approach presents distinct advantages and limitations that have 

shaped the current landscape of trajectory prediction systems. 
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1.2.1 Model-Driven Approaches 

Traditional model-driven methods generate aircraft trajectories by leveraging 

kinetic and kinematic models with various parameters including initial aircraft states, 

performance coefficients, weather conditions, and flight intentions [18, 19]. These 

physics-based approaches inherently guarantee flyability since they are grounded in 

aerodynamic principles and aircraft performance constraints [20]. However, they face 

significant challenges in balancing fidelity and diversity requirements. 

Early model-driven systems adopted free-flight concepts to enhance trajectory 

diversity by allowing aircraft to deviate from published flight routes [21, 22]. While 

this approach successfully generated varied trajectories, it resulted in poor fidelity as 

the synthetic paths often exhibited distributions that differed substantially from actual 

operational data. To address these concerns, subsequent research focused on 

optimization-based methods that search for optimal flight paths among predefined 

routes, including Standard Terminal Arrival Routes and associated deviation patterns 

[23]. Although these methods improved fidelity, they suffered from limited diversity 

due to the long-tail effect inherent in route selection, leading to homogenized trajectory 

generation that failed to capture the full spectrum of real-world operations. 

 

1.2.2 Optimization-Based Approaches 

Optimization frameworks have been widely employed to bridge the gap between 

flyability and operational realism. Techniques such as dynamic programming, mixed-

integer linear programming, and evolutionary algorithms have been utilized to compute 

fuel-optimal, time-optimal, or conflict-free trajectories [24, 25]. These approaches are 

particularly effective in structured environments, where clear performance objectives, 

such as fuel efficiency or minimal delay, can be formalized as cost functions subject to 

operational constraints. Typical constraints include separation minima, airspace 

structure, weather avoidance, and compliance with Standard Instrument Departures 

(SIDs) or Standard Terminal Arrival Routes (STARs). Multi-objective optimization has 

also been introduced to balance competing goals (e.g., minimizing emissions while 
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reducing conflict risk), further aligning generated trajectories with environmental and 

operational needs. 

Despite these advantages, optimization-based approaches face notable 

challenges. Their reliance on heavy computation makes them less suitable for large-

scale generation or real-time applications, especially when modeling complex 

environments with multiple interacting aircraft. Furthermore, their outputs are often 

deterministic and concentrated around optimal solutions, which limits diversity and 

fails to capture the variability observed in real-world operations. Attempts to introduce 

randomness or relax constraints to enhance diversity often compromise fidelity or 

violate feasibility. As a result, while optimization provides strong guarantees for 

flyability and compliance, it struggles to simultaneously ensure scalability and realism 

in diverse traffic scenarios. 

 

1.2.3 Data-Driven Methods 

The emergence of machine learning has revolutionized trajectory generation, 

particularly in ground transportation applications [26, 27]. These successes have 

motivated researchers to extend data-driven approaches to aircraft trajectory 

generation. Early implementations utilized traditional neural architectures including 

Multilayer Perceptrons [28], Long Short-Term Memory networks [29], and 

Convolutional Neural Networks [30] to extract spatial-temporal features from 

historical trajectory data. 

More sophisticated generative models have since been developed, incorporating 

Variational Auto-Encoders (VAEs) [31] and Generative Adversarial Networks (GANs) 

to synthesize novel trajectories. Recent aviation-specific implementations include 

VampPrior TCVAE [32], Conv1D-GAN [33], Gaussian mixture model-based 

generators [34], and Principal Component Analysis approaches [35]. These methods 

demonstrate improved fidelity and diversity compared to traditional model-driven 

approaches by incorporating controllers' operational experience extracted from 

historical data. 
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1.2.4 Reinforcement Learning Approaches 

Reinforcement learning (RL) has emerged as a promising direction for trajectory 

generation, particularly in environments where sequential decision-making and 

adaptation to dynamic conditions are required. In RL-based frameworks, the aircraft is 

modeled as an agent that learns optimal maneuvers through interaction with a simulated 

air traffic environment. Reward functions can encode efficiency, safety, and 

compliance with air traffic regulations [36, 37]. This formulation allows RL to naturally 

capture the trade-offs between conflicting objectives, such as minimizing fuel 

consumption while avoiding conflicts or adhering to sector capacity constraints. 

Several RL paradigms have been investigated in this context. Value-based 

methods such as Q-learning [38] have been applied to simplified two-dimensional 

navigation problems, while policy gradient methods and actor–critic architectures have 

been adopted for continuous control tasks relevant to aircraft dynamics. More advanced 

approaches leverage deep reinforcement learning (DRL) [39], where deep neural 

networks approximate the value or policy functions, enabling the handling of high-

dimensional state spaces that include weather fields, air traffic density, and aircraft 

performance envelopes. Multi-agent reinforcement learning (MARL) [40] has also 

gained attention, with multiple aircraft modeled as interacting agents that must 

coordinate to avoid conflicts while maintaining efficiency. 

Despite these advantages, RL-based methods face several critical challenges. 

Training typically requires millions of simulated interactions, making them 

computationally intensive and dependent on high-fidelity simulators. Moreover, the 

resulting policies may overfit to the training environment and fail to generalize under 

real-world uncertainties, such as unexpected controller interventions, varying weather 

patterns, or unmodeled aircraft dynamics. The design of reward functions is another 

key limitation: overly simplistic rewards can lead to unrealistic or unsafe behaviors, 

while overly complex reward shaping may hinder convergence. Safety and 

explainability remain significant concerns, as RL policies often behave like black 

boxes, making it difficult to certify them for safety-critical domains such as aviation. 
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Nevertheless, reinforcement learning provides a flexible foundation for 

trajectory generation, particularly when combined with domain knowledge or 

hybridized with physics-based models. Integrating explicit flight dynamics constraints 

into the training loop, or using imitation learning to pre-train policies from operational 

data, are promising directions that could help RL achieve more reliable and physically 

consistent trajectory generation. 

 

1.3 Current limitations 

Although a wide range of methods have been explored, several fundamental 

limitations remain across existing approaches. Model-driven and optimization-based 

frameworks, while ensuring flyability, often lack diversity and fail to replicate the 

operational complexity of real-world trajectories. Their deterministic nature tends to 

produce homogenized paths that do not capture the variability introduced by human 

controllers, weather deviations, and airspace constraints. 

On the other hand, data-driven and reinforcement learning approaches excel at 

capturing statistical patterns from historical operations but frequently generate 

trajectories that violate physical or operational constraints. Their reliance on 

differentiable loss functions is a key bottleneck, as many flight performance and safety 

requirements are inherently non-differentiable. Consequently, generated trajectories 

may compromise feasibility despite appearing realistic. Furthermore, probabilistic 

models of deviation are insufficient to represent the structured and rule-based nature of 

air traffic control interventions, which are deterministic rather than purely stochastic. 

As a result, current research struggles to simultaneously achieve fidelity, 

diversity, flyability, and scalability-highlighting the need for hybrid approaches that 

integrate the strengths of physics-based models, data-driven learning, and operational 

knowledge. 
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1.4 Proposed direction 

In this work, we aim to overcome the above limitations by introducing a hybrid 

trajectory generation framework that combines the strengths of deep learning with the 

guarantees of physically consistent modeling. Specifically, we integrate physics-based 

constraints directly into the learning pipeline, ensuring that generated trajectories 

remain operationally feasible while still benefiting from the flexibility and pattern 

recognition capabilities of modern neural networks. This design allows the model to 

respect aerodynamic principles and flight performance limits, while simultaneously 

learning realistic variations from historical operational data. By embedding physical 

correctness into the generative process itself, our approach seeks to achieve a more 

balanced trade-off between fidelity, diversity, flyability, and scalability than existing 

methods. 

Unlike conventional data-driven methods that rely on post-processing 

corrections or differentiable approximations of constraints, our framework enforces 

physical feasibility during the generation phase. This eliminates the need for heuristic 

adjustments or surrogate models and enables the direct incorporation of non-

differentiable aerodynamic rules into the trajectory synthesis process. At the same time, 

the use of deep generative models ensures that the system can capture complex patterns 

of controller interventions, route deviations, and operational variability that purely 

model-driven techniques fail to represent. 
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CHAPTER 2 THEORETICAL METHOD 

2.1 Dataset description 

The dataset employed for training our model is ATFMTraj (Aircraft Trajectory 

Classification Data for Air Traffic Management) [41]. ATFMTraj provides a large-scale 

collection of flight trajectory data specifically curated to support research in air traffic 

management, trajectory prediction, and classification tasks. It contains approximately 

70,000 distinct aircraft trajectories, each with an average duration of 1200 time steps, 

sampled at a frequency of one second. This high temporal resolution ensures that the 

dataset captures fine-grained variations in aircraft dynamics and operational patterns. 

Examples of dataset trajectories illustrated on Fig. 1. 

 

 

Fig. 1. Examples of dataset trajectories in 3d space and projected on 2d space 

 

The trajectories were collected from a diverse range of airports across the globe, 

including major hubs such as Incheon International Airport (ICN), Stockholm Arlanda 

Airport (ARN), and Zurich Airport (ZRH). By encompassing different airspaces, traffic 

densities, and operational environments, the dataset introduces substantial variability 

in flight paths. This diversity enhances the generalizability of models trained on 
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ATFMTraj, enabling them to learn not only common movement patterns but also rare 

or complex behaviors observed in real-world operations. 

To ensure consistency and usability, the dataset undergoes a rigorous 

preprocessing pipeline. First, incomplete or corrupted trajectories are discarded. The 

remaining flight paths are then transformed from geographic coordinates (latitude, 

longitude, altitude) into a local East–North–Up (ENU) Cartesian coordinate system, 

bounded by an airport-specific radius. Each trajectory is resampled at 1-second 

intervals, and noise is reduced through outlier removal and Savitzky–Golay filtering to 

obtain smoother and more physically consistent paths. Afterward, trajectories are 

normalized, bringing all values into a comparable scale across airports. 

For our specific task of aircraft trajectory generation, we further adapt the dataset 

to match the requirements of our model. Instead of using the full one-second frequency, 

trajectories are downsampled to one point every five seconds, which reduces excess 

points while retaining essential motion dynamics. In addition, longer sequences are 

sliced into smaller trajectory segments that are more suitable for model training, 

ensuring that the inputs remain consistent with the design and capacity of our 

generation framework. 
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2.2 General structure information 

The core architecture has structure, designed to capture temporal patterns and 

ensure physically realistic predictions Fig. 2. 

 

 

Fig. 2. General model structure 

 

What makes our approach unique is the integration of learned patterns with 

physical constraints throughout the entire pipeline. While the model learns complex 

relationships from data, it simultaneously enforces velocity limits, acceleration 

constraints, and smoothness requirements that reflect real aircraft capabilities. By 

combining data-driven learning with physics-based validation, we achieve predictions 

that are both accurate and operationally feasible for real-world aviation applications. 
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2.3 Feature extraction 

Aircraft movement follows specific patterns related to velocity, acceleration, and 

direction changes, so our preprocessing pipeline extracts these kinematic properties 

and creates rich feature representations that help the model understand the underlying 

physics of flight. 

The model begins by transforming raw three-dimensional coordinates into a 

comprehensive 16-dimensional feature space that captures the essential physics of 

aircraft motion Fig. 3. Rather than expecting the neural network to learn motion 

dynamics from scratch, this approach provides it with physically meaningful features 

from the outset. 

 

 

Fig. 3. Visualization of data and feature engineering 
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The feature extractor computes multiple derivatives of position to capture 

different aspects of motion. Starting with the original x, y, and z coordinates, it 

calculates velocity using central differences. This same approach extends to 

acceleration and jerk, the third derivative that measures how smoothly acceleration 

changes over time. 

Beyond these derivatives, the extractor computes specialized aviation-relevant 

features. Speed represents the magnitude of the velocity vector, while heading angle 

captures the horizontal direction of flight. The climb angle indicates whether the 

aircraft is ascending or descending relative to the horizontal plane. Together, these 

features provide a multi-scale temporal representation of motion, from instantaneous 

position to the rate of acceleration change. 

The use of central differences throughout the feature extraction process ensures 

numerical stability and reduces noise in the computed derivatives. This is particularly 

important for aircraft trajectories, where measurement noise can significantly affect 

derivative calculations. By starting with physics-aware features, the model gains an 

immediate advantage in understanding motion patterns. Also, we handle the fact that 

velocity and acceleration cannot be computed at trajectory boundaries by using zero-

padding, ensuring consistent input dimensions while explicitly marking these boundary 

conditions for the model. 

 

2.4 Encoder structure 

After adding new features to input data we are using encoder to further process 

it. Rather than treating trajectory generation as a simple sequence-to-sequence 

problem, we recognize that past and future segments contain fundamentally different 

types of information that require specialized processing before they can be effectively 

combined. 

The encoder employs separate Gated Recurrent Unit networks for past and future 

sequences, allowing each to specialize in its temporal direction. GRUs were chosen 

over simpler RNNs for their superior gradient flow properties and over transformers 
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for their computational efficiency with sequential data. These parallel encoders process 

their respective sequences independently before engaging in sophisticated information 

exchange. Fig. 4.  

 

 

Fig. 4. Trajectory encoding process 

 

The key innovation comes through multi-layer cross-attention mechanisms. In 

these layers, the past trajectory representation attends to the future trajectory and vice 

versa, enabling the model to identify relationships between where the aircraft was and 

where it will be. This bidirectional attention is applied twice, with each iteration 
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followed by feed-forward networks and layer normalization, creating increasingly 

refined representations that capture complex temporal dependencies. 

Learnable position embeddings enhance the model's understanding of temporal 

relationships within each sequence. These learned embeddings can adapt to the specific 

temporal patterns present in aircraft trajectories, such as the characteristic time scales 

of different maneuvers. 

The encoder pays special attention to boundary conditions-the points where the 

predicted segment must connect to the known past and future. It extracts the last two 

points from the past trajectory and the first two from the future, capturing both position 

and velocity information at these critical junctions. A dedicated fusion network 

combines these boundary features, ensuring the model maintains awareness of the 

connection constraints throughout processing. 

 

2.5 Physics-constrained decoder 

Unlike traditional sequence decoders that generate outputs based solely on 

learned patterns, our decoder integrates aerodynamic principles and operational 

constraints throughout the generation process. 

The decoder component represents a critical stage in the trajectory prediction 

pipeline, transforming the abstract encoded context representation into a smooth, 

physically plausible trajectory that seamlessly connects the past and future segments. 

This transformation is achieved through a sophisticated multi-stage process that 

strategically combines classical analytical methods with modern learned components, 

balancing mathematical guarantees with data-driven flexibility Fig. 5. 
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Fig. 5. Structure of model decoder 

 

The first step of trajectory generation relies on cubic Hermite spline 

interpolation, a well-established mathematical technique from numerical analysis. This 

approach creates a smooth parametric curve between the end point of the past trajectory 

and the beginning point of the future trajectory, leveraging not just the spatial positions 

at these critical boundary points but also the instantaneous velocities. 

The choice of Hermite splines is particularly advantageous because they provide 

mathematical guarantees that both position and velocity change continuously without 

abrupt jumps or discontinuities. This property is a critical requirement for realistic 

aircraft motion modeling, as real aircraft cannot instantaneously change velocity due 

to physical constraints like inertia and aerodynamic forces. 

The cubic formulation provides sufficient flexibility to match both position and 

velocity boundary conditions while maintaining computational efficiency, striking an 

optimal balance between complexity and expressiveness. 

While the Hermite spline provides a mathematically sound baseline, it cannot 

capture the complex, scenario-specific patterns present in real flight data. To address 

this limitation, a Gated Recurrent Unit (GRU)-based trajectory generator operates on 

top of the analytical foundation to produce context-aware adjustments. 

This recurrent neural network processes the encoded context representation 

along with explicit boundary condition information to generate trajectory 

modifications that reflect the specific characteristics of the current flight scenario.  
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This design choice is crucial: it maintains the inherent smoothness and physical 

plausibility of the base Hermite trajectory while adding the necessary fine-grained 

adjustments needed to improve prediction accuracy and capture real-world flight 

patterns that pure analytical methods would miss. 

The model incorporates multiple complementary smoothing techniques to 

ensure that the generated trajectories remain physically plausible and free from 

artifacts. We use filter on the trajectory by computing weighted averages of each point 

with its temporal neighbors, effectively reducing high-frequency noise and oscillations 

that could arise from the neural network components. 

Unlike simple moving averages, this filtering approach is designed to preserve 

important features like peaks and overall trajectory shape while suppressing unrealistic 

fluctuations. Additionally, the decoder implements explicit acceleration constraints that 

enforce physically realistic limits on the rate of velocity change. These constraints 

prevent the generation of impossible maneuvers that would exceed the performance 

envelope of real aircraft-such as instantaneous direction changes or excessive g-forces-

ensuring that all predicted trajectories respect fundamental physical laws and aircraft 

operational limitations. 

To ensure proper geometric connection with the known future trajectory 

segment, the decoder applies a sophisticated soft endpoint constraint mechanism. 

Rather than rigidly forcing exact endpoint matching through hard constraints-which 

could create artificial discontinuities or unrealistic sharp corrections near the boundary-

the system gradually corrects the trajectory toward the target endpoint using a smooth 

linear interpolation of the accumulated position error over the predicted time window.  

This approach also implements that early in the predicted segment, the trajectory 

has more freedom to deviate based on learned patterns, but as it approaches the 

boundary with the future segment, corrections become progressively stronger. This 

gradual blending maintains overall smoothness and physical realism while 

simultaneously ensuring that the predicted segment connects properly to the known 
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future, avoiding visible seams or discontinuities that would compromise the quality 

and usability of the complete trajectory reconstruction. 

 

2.6 Loss function 

Defining loss function is crucial element of our trajectory generation framework. 

Instead of relying solely on a mean squared error (MSE) between generated and 

ground-truth trajectories. we introduce a multi-objective loss function, sophisticated 

loss function to ensure the model learns to generate physically realistic trajectories. 

This multi-component loss function supervises the model at different scales of motion. 

 

ℒtotal = ℒpos + 𝜆1ℒvel + 𝜆2ℒacc + 𝜆3ℒjerk  

 

where ℒpos  – weighted MSE loss; ℒvel  – velocity loss; ℒacc  – acceleration loss; 

ℒjerk  – jerk penalty; 𝜆𝑖 – weights. 

The primary component measures position accuracy through mean squared error 

between predicted and ground truth trajectories. However, matching positions alone 

isn't sufficient for smooth, realistic motion. The loss function therefore includes 

velocity matching with a weight of 0.3, ensuring the model learns correct speed profiles 

throughout the trajectory. Acceleration matching, weighted at 0.2, maintains proper 

dynamics and helps the model understand how aircraft change speed and direction. 

Furthermore, the loss includes a jerk penalty weighted at 0.1. By penalizing large 

values of jerk, the training process naturally encourages the generation of smooth 

trajectories. This reflects the physical reality that aircraft, due to their mass and control 

system limitations, cannot change acceleration instantaneously. 

This multi-scale supervision provides training signals at different derivative 

orders, helping the model learn the full dynamics of motion rather than just position 

sequences. The carefully chosen weights balance these objectives, preventing any 

single component from dominating while ensuring all aspects of trajectory quality are 

maintained.  
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CHAPTER 3 PRACTICAL RESULTS 

3.1 Training parameters 

For the training process, the dataset was divided into three subsets: 70% for 

training, 20% for validation, and 10% for testing. This split ensured that the model had 

sufficient data for learning while still being evaluated on unseen samples during and 

after training. The training was conducted for a total of 70 epochs, allowing the model 

to gradually refine its parameters and improve predictive accuracy. 

The training configuration included the following parameters: 

• Batch size: 64. 

• Learning rate decay: 0.1. 

• Optimizer: Adam with parameters (weight decay=; ; ). 

 

During the training phase, the model’s performance was evaluated on the 

validation subset at the end of each epoch. This continuous monitoring allowed us to 

detect overfitting or underfitting trends and ensured that the model’s generalization 

ability was preserved.  

 

3.2 Model results and results analysis 

Fig. 6 demonstrates the results of trajectory generation for several representative 

examples, illustrating how the proposed model captures the overall flight dynamics and 

produces realistic trajectories.  
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Fig. 6. Examples of generated trajectories, projected on 2d space 

 

In this image you can see examples of trajectory prediction of our model. Each 

column refers to one example, projected on every possible 2d plane. The blue line 

represents the past segment of the trajectory, the green line corresponds to future 

segment, the orange line denotes the model prediction, and the red line indicates the 

true trajectory for comparison. 

Our model produces reasonably accurate predictions. While it does not replicate 

the target path with complete precision, it generates its own smooth and realistic 

trajectories that remain close to the ground truth, which was our primary task. This 

behavior is particularly valuable, since exact replication of future motion is neither 

feasible nor always desirable due to inherent stochasticity in real-world trajectories. 

Moreover, the generated paths exhibit continuity and physical plausibility, 

avoiding unrealistic jumps or discontinuities that are common in naive approaches. The 

slight deviations from the true trajectory can also be interpreted as the model’s ability 

to generalize rather than memorize training examples. Overall, these results 

demonstrate that the model captures both short-term dynamics and long-term motion 
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trends effectively, producing trajectories that are consistent, feasible, and aligned with 

actual aircraft behavior. 

Another, more distinct example of the model’s capabilities is its ability to 

generate entirely new paths that do not simply mirror the ground truth but still maintain 

realism and adherence to physical constraints Fig. 7. In such cases, model produces 

smooth and coherent trajectory that could plausibly represent an alternative evolution 

of the aircraft’s movement. This is particularly important in scenarios where future 

trajectories are inherently uncertain, as the model can propose multiple feasible 

continuations rather than overfitting to a single deterministic path. 

 

 

Fig. 7. Examples of model generating completely new trajectories, projected on 2d 

space 

 

However, despite these strengths, certain limitations remain. In some instances, 

the model tends to produce unnecessarily complex trajectories Fig. 8. These cases 

suggest that while the physics constraints embedded in the architecture mitigate most 

unrealistic behaviors, additional regularization or refinement could further reduce such 
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artifacts. Addressing this challenge is essential for improving reliability in safety-

critical applications such as air traffic management. 

 

 

Fig. 8. Examples of model unnecessarily complex trajectories, projected on 2d space 

 

Also, to evaluate objective quality of generated trajectories, we evaluate our 

model on test dataset and compute metrics that include confidence scores of the model, 

Mean Square Error and Mean Absolute Error. Table 1 illustrates this metrics. 
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Table 1. Metrics values for test dataset. 

Metric Value 

Mean Squared Error 0.000004 

Mean Absolute Error 0.001211 

Root Mean Squared Error 0.002042 

 

The metrics confirm the effectiveness of the developed model for aircraft 

trajectory prediction. Despite fluctuations in some specific cases, the model 

consistently generates trajectories that remain within acceptable operational limits. 

This indicates that the approach not only achieves high accuracy on average but also 

maintains robustness under varying conditions. The stability of results across diverse 

scenarios suggests strong generalization ability, which is crucial for practical 

deployment in real-world air traffic management systems.  

 

3.3 Model testing in new environment 

We also explored a more challenging setting by combining past and future 

segments originating from different trajectories and using them as input to generate 

completely new trajectories Fig. 9. 
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Fig. 9. Examples of model generating trajectories for different dataset paths, projected 

on 2d space 

 

The model still managed to generate coherent transitions between mismatched 

segments, producing trajectories that different trajectories into a consistent motion 

path. This outcome underscores the robustness and adaptability of the approach, 

highlighting its potential for trajectory generation in more complex operational 

scenarios. 
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CONCLUSION 

In this work, we presented a hybrid framework for aircraft trajectory generation 

that integrates data-driven learning with physics-based constraints. Unlike traditional 

methods that either oversimplify flight dynamics or rely solely on black-box neural 

models, our approach leverages the strengths of both domains. By embedding 

aerodynamic principles, velocity and acceleration constraints, and smoothness 

requirements directly into the pipeline, the proposed model generates trajectories that 

are not only accurate but also operationally feasible. 

The key innovation lies in the seamless integration of multiple specialized 

components: separate transformer encoders for past and future trajectory segments, 

cross-modal attention mechanisms for temporal relationship modeling, and a physics-

constrained decoder with multiple prediction heads. This architecture enables the 

model to capture complex flight dynamics while maintaining adherence to fundamental 

physical constraints including velocity limits, acceleration bounds, and trajectory 

smoothness requirements. 

The experimental evaluation on the ATFMTraj dataset demonstrated that our 

method consistently produces smooth, continuous, and physically plausible paths, even 

in complex and uncertain scenarios. The results highlight the model’s ability to 

generalize beyond exact replication, offering realistic alternatives when deterministic 

predictions are neither possible nor desirable. Importantly, the framework maintains 

robustness across diverse flight conditions, reinforcing its suitability for safety-critical 

applications such as air traffic management and decision support systems. 

Dataset of 70,000 trajectories from airports worldwide was used to train our 

model. Validation demonstrates the effectiveness of our approach. The model achieves 

quantitative performance with MSE of 0.000004 and MAE of 0.001211 and RMSE 

0.002042. Visual assessment confirms that generated trajectories exhibit realistic flight 

patterns and smooth transitions between past and future segments. 

While the approach shows strong performance, challenges remain in further 

reducing overly complex outputs and optimizing for efficiency in large-scale 
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deployments. Future work will focus on refining regularization strategies, exploring 

multi-modal prediction to handle uncertainty more explicitly, and integrating real-time 

operational constraints. With these extensions, the framework has the potential to 

become a core component in next-generation air traffic management systems, 

supporting safer, more efficient, and more reliable aviation operations. 
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