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ABSTRACT 

 

 The use of intelligent underwater vehicles for ocean exploration has been highly 

effective in areas like marine life exploration, fisheries, ecological monitoring, and 

military applications. Integrating computer vision algorithms has greatly enhanced 

these vehicles' capabilities. However, underwater image detection faces unique 

challenges such as poor image quality, densely-packed targets that are difficult to 

discern, limited training data, and constrained computational power. There is a need 

for research of innovative approaches specifically tailored to address these challenges 

and enhance the precision and efficiency of underwater object detection. 

 The purpose of this study is to design an intellectual system for underwater 

object detection and classification, which is both deployment-efficient and achieves 

high accuracy. 

 The tasks are as follows: 

1) analyze the challenges and existing approaches, find out its limitations; 

2) create a preprocessing module to effectively process underwater images; 

3) design a neural network topology to resolve unique challenges present in the 

realm of underwater object detection; 

4) train the network on data, obtained from intelligent underwater vehicle camera; 

5) analyze the results and compare it to existing results; 

6) build software for the proposed approach. 

 Methodology used in this paper: we proposed a deployment-efficient intelligent 

system for underwater object detection handled autonomously on such a device, which 

achieves superior performance by integrating preprocessing module, custom feature 

extractor with transformer block, neck module with attention layers and an improved 

YOLO-based object detection head module, which integrates extra prediction head for 

small objects, based on higher-resolution feature maps. 

 

Keywords: underwater object detection; classification; hybrid neural networks, 

transformers; attention; deep learning  



 3 

1. RELATED WORK 

   

 In the realm of object detection, while general object detection algorithms have 

demonstrated proficiency on generic datasets, their application to underwater scenes 

poses distinct challenges. These challenges stem from the inherent complexities of 

underwater environments, including poor image quality, color distortion, light 

interference, and the prevalence of small, densely-packed targets. Consequently, the 

task of UOD necessitates a nuanced approach, typically bifurcated into image pre-

processing and object detection subtasks. 

 

 

Fig. 1. Samples from UTDAC2020 dataset demonstrating unique challenges in 

underwater object detection tasks, such as a) low contrast, b) presence of small and 

densely located objects, c) lighting issues, d) target occlusion and mimicry. 

 

1.1 Image preprocessing 

 

 Underwater visibility is profoundly impacted by the presence of water molecules 

and suspended particles, which introduce distortion to light and result in the absorption 

of different colors at varying wavelengths. To address this challenge, recent 

advancements have been made to enhance underwater neural networks using 
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innovative techniques. The researchers in [1] leveraged the absorption differences in 

various color channel wavelengths to estimate the transmission plot through the scene 

depth. The underwater neural network was then fortified through the application of 

graph tangent theory, demonstrating a promising approach to tackle the adverse effects 

of underwater visibility. In a complementary effort, Hu et al. [2] conducted a thorough 

analysis of the imaging principles underlying underwater images and outlined the 

factors contributing to their diminished quality. They succinctly categorized existing 

methods and delved into underwater video enhancement technologies. Notably, 

underwater imagery is susceptible to strong absorption, scattering, color distortion, and 

noise stemming from artificial light sources, resulting in image blur, haziness, and a 

discernible bluish or greenish tone. To mitigate these issues, a significant contribution 

was made in [3], where two distinct methods for underwater image dehazing and color 

restoration were proposed, offering valuable insights into combating the challenges 

associated with underwater image quality degradation. Hu et al. [4] introduced an 

improved approach for correcting transmittance based on the underwater polarization 

imaging model, mitigating inaccuracies in object irradiance caused by polarization 

effects. He et al. [5] presented the dark channel prior algorithm, which estimates light 

transmission maps to remove fog-induced blur by leveraging the tendency of the dark 

channel intensity to approach zero in clear images. Fu et al. [6] proposed a Retinex-

model-based method for image decomposition, separating images into illumination and 

reflectance components to preserve object detail, further introducing a novel shrinkage 

factor to aid in component estimation. Zhang et al. [7] devised a technique involving 

color correction and gamma correction within the HSV color space and Retinex model, 

respectively, to restore the true appearance of underwater images. Lastly, Liu et al. [8] 

introduced the twin adversarial contrastive learning algorithm, which employs both 

self-supervised and unsupervised approaches to process underwater datasets.  

 In their comprehensive framework for underwater image enhancement detailed 

in [9], the researchers presented a sophisticated combination of techniques aimed at 

addressing the multifaceted challenges inherent in underwater imagery. The proposed 

algorithm encompasses an improved image fusion and enhancement strategy including 
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image edge feature sharpening and dark detail enhancement through homomorphism 

filtering conducted within the CIELab color space. To counter color deviation and 

elevate color saturation, the multi-scale retinal with color restoration (MSRCR) 

algorithm is employed within the RGB color space. Additionally, the contrast-limited 

adaptive histogram equalization (CLAHE) algorithm is enlisted to effectively defog 

the images and enhance overall contrast, ultimately yielding a final enhanced image 

that represents a significant advancement in underwater image quality. Hong et al. [10] 

introduced the Water Quality Transfer (WQT) augmentation method, augmenting 

domain diversity and enhancing the performance of domain generalization in UOD. 

Lin et al. [11] presented an image enhancement algorithm based on candidate frame 

fusion, refining the detection of underwater targets. Sun et al. [12] employed transfer 

learning techniques to achieve exceptional results in identifying objects in low-quality 

underwater videos, boasting an impressive average classification accuracy of 99.68% 

for 23 fish species. 

 

1.2 Object detection and classification 

 

 In the domain of deep-learning-based object detection models, two primary 

methodologies have emerged: anchor-based algorithms and anchor-free algorithms. 

Anchor-based approaches, such as Faster R-CNN [13], SSD [14], and RetinaNet [15], 

rely on predefined anchor boxes to localize objects within images. Anchor-free 

algorithms as YOLOX [16] and FCOS [17] only calculate the center point of the 

bounding box and position coordinates compared to the pre-set anchor scale and aspect 

ratio., simplifying the detection pipeline. Recent advancements such as attention have 

further enhanced the capabilities of these methods, refining object localization and 

classification accuracy. Notably, in the context of underwater image analysis, 

researchers often adopt a holistic approach, integrating both image enhancement and 

object detection components into their models. 

 The challenges posed by small and dense underwater targets necessitate 

advanced techniques for effective object detection. Deep Convolutional Neural 
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Networks (CNNs) have emerged as powerful tools for such tasks, enabling multi-layer 

non-linear transformations that extract intricate features and represent them at higher 

abstraction levels. Among the widely-used CNNs, the YOLO (You Only Look Once) 

series stands out for its efficiency in object detection tasks [18].  

 

1.3 Underwater object detection frameworks 

 

 Researchers have leveraged YOLO-based architectures for various underwater 

applications, showcasing the versatility of these networks. Sung et al. [19] proposed a 

YOLO-based CNN for real-time video image analysis, achieving an impressive 93% 

classification accuracy in detecting fish. Pedersen et al. [20] adopted YOLOv2 and 

YOLOv3 for marine-animal detection, while Zhang et al. [21] introduced a lightweight 

UOD framework based on YOLOv4 and multi-scale attentional feature fusion. Liang 

Chen et al. [22] contributed to the field with a lightweight underwater target detection 

algorithm based on dynamic sampling transformer and knowledge distillation 

optimization. In a novel approach [23], Liu et al. introduced TC-YOLO, a new UOD 

framework. This framework combines the CLAHE preprocessing algorithm, a 

modified YOLOv5s architecture, and optimal transport label assignment with attention 

mechanisms in the backbone and neck of the network, showcasing a comprehensive 

strategy to address the intricacies of UOD. Shen et al. [24] proposed the multi-

dimensional, multi-functional, and multi-level attention module (mDFLAM), 

enhancing the robustness and generalization capabilities of YOLO on underwater 

images. Xu et al. [25] devised the scale-aware feature pyramid architecture named SA-

FPN, optimizing feature extraction and enhancing marine object detection performance. 

Pan et al. [26] introduced a modified method based on multi-scale ResNet, improving 

efficiency by accurately detecting objects of various sizes, particularly small ones. 

Muksit et al. [27] enhanced the original YOLOv3, addressing issues of misdetection of 

tiny fish by adjusting upsampling step sizes and incorporating Spatial Pyramid Pooling. 

Long Chen et al. [28] proposed the SWIPENet algorithm, leveraging sample re-

weighting to reduce interference from noisy samples. Lingyu Chen et al. [29] modified 
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the YOLOv4 structure by integrating deconvolution modules and depthwise separable 

convolution, enhancing the network's capabilities. Wang et al. augmented YOLOv7 

[30] with an image enhancement module and implemented Focal EIOU as a new 

bounding box regression loss, mitigating performance degradation caused by mutual 

occlusion and overlapping of underwater objects. Lastly, Minghua Zhang et al. in [31] 

proposed to replace the original backbone of YOLOv8 with FasterNet network, which 

is optimized for low latency. However, the proposed algorithm lacks underwater image 

enhancement network, which results into missing certain targets in environments with 

poor visibility and high degree of target overlap. 

 

1.4 The limitations of existing underwater object detection systems 

 

 Original YOLOv8 network is considered a state-of-the-art (SOTA) model for 

object detection, and provides several major improvements compared to earlier 

versions. In backbone, C3 structure has been replaced with lighter C2f to facilitate 

more extensive gradient flow. Head part of YOLOv8 architecture has been modified 

by decoupling heads for regression and classification tasks, also replacing anchor-

based design in favor of anchor-free. The loss function of YOLOv8 features 

distribution focal loss term and the task-aligned assigner label matching strategy. 

YOLOv8 is available in five variants, which differ in parameters count. Starting for the 

tiniest, the versions are YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. 

 However, although YOLOv8 provides pre-made slimmed versions like 

YOLOv8s, it still has drawbacks like high computational complexity and high network 

transmission volume, which results in slower detection speed and increased hardware 

requirements, making it more difficult to operate on edge devices. To solve these 

problems, a more hardware-aware approach is required. 

 Regarding the systems optimized specifically underwater object detection, 

several drawbacks persist within current methodologies. Often, researchers concentrate 

their efforts on isolated aspects of the detection pipeline, such as refining image 

preprocessing techniques or enhancing object detection algorithms. Consequently, 
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there is a dearth of comprehensive approaches that synergize the strengths of both 

domains, potentially limiting the overall effectiveness of underwater detection systems. 

Moreover, many proposed algorithms overlook the practical constraints imposed by 

the hardware limitations of underwater vehicles. These algorithms frequently fail to 

account for the necessity of running on resource-constrained hardware and rely heavily 

on pre-made, smaller versions of YOLO. This oversight hampers the scalability and 

applicability of these algorithms in real-world underwater environments, highlighting 

the need for more holistic and hardware-aware approaches to underwater object 

detection. 
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2. THEORETICAL RESEARCH 

 

2.1 Problem statement 

 

 Given a dataset comprising images, the objective is to develop an efficient object 

detection and classification network capable of accurately identifying objects within 

the images, determining their respective bounding boxes, and assigning appropriate 

class labels to the detected objects. 

 Let (𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑖 , 𝑌𝑖)  represent the training samples, where 𝑋𝑖 ∈

ℝ𝑛×𝑛  denotes the 𝑖 − th RGB image matrix with dimensions 𝑛 × 𝑛 × 3 , and 𝑌𝑖 

represents the ground truth annotations for the corresponding image, consisting 

bounding box coordinates and class labels. 

 The primary objective is to develop a neural network architecture capable of 

accurately predicting bounding box coordinates and class probabilities for objects 

within the input images. This involves training the network to learn optimal weight 

coefficients that minimize a predefined loss function. 

 Let 𝑓𝜃: ℝ
𝑛×𝑛 → ℝ𝑆×𝑆×(𝐵×5+𝐶) represent the YOLO network parameterized by 

weights θ, where 𝑆 is the grid size, 𝐵 is the number of bounding boxes predicted per 

grid cell, and 𝐶 is the total number of object classes. The output of the network is a 

tensor of dimensions 𝑆 × 𝑆 × (𝐵 × 5 + 𝐶) representing the predicted bounding box 

coordinates and class probabilities for each grid cell. 

 Generally, loss function for object detection and classification tasks can be 

defined as:  

 

where ℒcoord , ℒconf  and ℒclass  are the localization, confidence and classification 

losses in that order, and 𝜆coord , 𝜆conf , 𝜆class  are the coefficients to balance the 

influence of each component in general loss function. 

 In modern YOLOv8-based detectors, CIoU [32] is used as the box loss, binary 

cross entropy is used for multi-label classification as the classification loss and 
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distribution focal loss [33] is used as the third term in general loss function. 

 Formally, this loss function can be defined as follows: 

 

where: 

 

 Here, 𝑁pos represents the number of cells featuring an object, 𝟙𝑐𝑥,𝑦∗ is an indicator 

function for the cells featuring an object, 𝛽𝑥,𝑦 is the ground truth bounding box position, 

𝑏𝑥,𝑦 is the predicted box of the respective cell, �̂�𝑥,𝑦 are the coordinates of the center 

point of the ground truth bounding box, 𝑦𝑐 represents the ground truth label for class c 

for each individual grid cell (x, y) in the input, 𝑞(𝑥,𝑦)+1 are the nearest left and right 

predicted boxes IoU which belong to 𝑐𝑥,𝑦
∗ , 𝑤𝑥,𝑦 and ℎ𝑥,𝑦 are width and height of the 

box, 𝜌 is the diagonal length of the smallest enclosing box covering the predicted and 

ground truth boxes. The best candidate is then determined by each cell for predicting 

the bounding box of the object.  

 The optimization process involves minimizing the defined loss function ℒ using 

Stochastic Gradient Descent (SGD) with momentum. The update rule for SGD with 

momentum is as follows: 
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, 

where 𝑣𝑡  is the velocity term representing the exponentially weighted moving average 

of past gradients, 𝜃𝑡 are the network parameters at iteration 𝑡, ∇𝜃ℒ(𝜃𝑡) is the gradient 

of the loss function with respect to the network parameters at iteration 𝑡, 𝜂 denotes the 

learning rate, 𝛽 represents the momentum term. 

 

2.2 Proposed approach 

 

 To solve the unique challenges, present in underwater object detection tasks, 

such as visibility issues, the presence of small densely packed objects and target 

occlusion, we present a complex object detection system. Its architecture is based on 

YOLOv8 design, which consists of three parts: backbone, neck and head. In brief, the 

following modules have been developed to create our underwater object detection 

system: 

1. Preprocessing module: to reduce the unwanted distortion effects which are 

present in underwater images, we have designed a preprocessing module, which 

decreases false negatives count, especially with smaller targets. 

2. Backbone with Transformer block: to overcome a significant constraint of 

YOLOv8 in adequately capturing global and contextual information, which is a 

frequent issue encountered by CNNs with restricted receptive fields, our 

methodology entails the replacement of the terminal C2f layer within the 

CSPDarkNet53 backbone with a Swin Transformer block.  

3. Neck with attention module: the attention modules were embedded in the neck 

part of object detection system to capture the global information for the features 

of different sizes after its extraction and fusion. This integration provides further 

improvement in object detection capabilities of the system. The attention block 

was carefully selected to be both effective and deployment efficient. 
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4. Object detection head for small objects: through experimenting with different 

feature map sizes, we have discovered that using larger feature maps helps 

significantly with the detection of small objects, thus we have developed an 

additional classification head accepting larger 160 x 160 feature map as an input, 

which resulted in improved small target detection. 

 

2.2.1 Preprocessing module 

 

 We have developed an image preprocessing module to introduce a boost in 

underwater model recall by improving the details and restoring original colors of the 

underwater image, which results in a decreased number of missed detections when it 

comes to smaller targets. The module is based on Contrast Limited Adaptive Histogram 

Equalization (CLAHE) [34], as it was proven to be most effective preprocessing 

solution during comparison with Histogram Equalization (HE) and Adaptive 

Histogram Equalization (AHE). 

 Algorithm Precision Recall Time 

1 Original 82.73% 78.96% - 

2 HE 80.8% 76.67% 2.5ms 

3 AHE 78.67% 75.22% 2.7ms 

4 CLAHE 82.67% 81.02% 2.5ms 

Table 1. Preprocessing algorithms influence on object detection performance 

CLAHE algorithm and consists of four steps: 

1) Divide the image into non-overlapping tiles of a specified size. 

2) Compute the histogram Hi(k) for each tile 𝑖. 

3) Perform histogram equalization independently for each tile: 

 

where L  is the function that maps the intensity values of 𝐼(𝑥, 𝑦)  to the 

corresponding equalized values using the histogram 𝐻𝑖. 

4) Apply contrast limiting: 
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 The images from training and testing set were resized to 640 x 640 and then 

processed using CLAHE implementation from OpenCV library with ‘clip limit’ value 

manually lowered to 2 to avoid unnecessary changes in color. Average processing time 

for each image sample is 2.5ms, and the boost in recall comparing to an unprocessed 

image is 2.06% which we consider an acceptable trade-off between time and 

performance. 

 

Fig. 2. Image taken from UTDAC2020 dataset before and after preprocessing 

 

2.2.2 Modified network backbone 

 

 We have designed a modified version of CSPDarkNet53 backbone featuring a 

Swin Transformer block, which replaces the terminal C2f block in original 

CSPDarkNet53. The placement of the block is based on an assumption that operating 

on low-resolution feature maps (20 x 20) would reduce computational complexity and 

memory requirements. Integrating this block results in better capturing global and 

contextual information, improving the detection performance with the objects of 

varying sizes. 

 Swin Transformer uses a patch division module to split the image into non-

overlapping segments and treats it as a token. These patches are then processed through 

a series of transformer layers, allowing the model to capture spatial information across 

the image while maintaining computational efficiency, leveraging the strengths of both 

vision transformers and convolutional neural networks [35]. 
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 The architecture of Swin Transformer is as follows: 

 

Fig. 3. Swin Transformer architecture 

 

2.2.3 Attention-aware neck 

 

 We have placed Coordinate Attention (CA) [36] block in object detection 

algorithm neck enables the model to focus on relevant spatial positions within the 

images, thus enhancing the ability to detect smaller targets and reducing false negatives 

count. 

 CA block focuses on exploiting the spatial information within feature maps by 

learning attention weights for each spatial position. Unlike traditional attention 

mechanisms that operate on channel-wise features, CA attends to the relationships 

between different spatial positions. It aims to capture long-range dependencies and 

contextual information within the feature maps, thus enhancing the model's ability to 

understand spatial relationships and capture fine-grained details.  

 Firstly, a pair of direction-aware feature maps is generated for two spatial 

dimensions, using the following transformations: 

 

where 𝑧 are the outputs of the 𝑐-th channel at width 𝑤 and height ℎ respectively, which 

are then concatenated and sent to a 1x1 convolutional function 𝐹1 as follows: 
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where 𝛿  is a non-linear activation function and 𝒇  is the intermediate feature map 

containing spatial information along horizontal and vertical dimensions. Next, 1x1 

convolutional transformations 𝐹ℎ and 𝐹𝑤 are applied to fh and fw: 

 

where 𝜎  is the sigmoid function. The outputs of this transformations are used as 

attention weights for both spatial dimensions, yielding final block output: 

 

 The overall structure of CA block can be shown as follows: 

 

Fig. 4. The structure of Coordinate Attention (CA) block 

2.2.4 Separate head for small object detection 

 

 In YOLOv8, final detection is one by three detection heads which accept the 

feature maps of resolution 80 x 80, 40 x 40 and 20 x 20. By conducting experiments 

with higher resolution feature map, we have come to the conclusion that integrating an 

extra object detection head for processing 160 x 160 feature maps can greatly improve 

small object detection performance, by effectively using more global and local 

contextual information, which gets diluted during the upsampling process, but still 

present in earlier feature maps. 
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3. EXPERIMENT RESULTS AND PROPOSED SOFTWARE 

 

3.1 Data overview 

 A challenging underwater detection dataset UTDAC2020, which is short for 

Underwater Target Detection Algorithm Competition 2020, has been selected to test 

the performance of the proposed algorithm. The dataset features 5168 training and 

1293 validation images in various resolutions (3840 x 2160, 1920 x 1080, 720 x 405 

and 586 x 480), featuring 4 classes (echinus, holothurian, scallop and starfish).  

 

3.2 Implementation details 

 

 The experimental setup consisted of Intel Xeon E5 CPU (2.00 GHz), two 

NVIDIA Tesla T4 GPU with 16GB VRAM each with Ubuntu 20.04.6 LTS installed, 

Python version 3.10.13, CUDA version 12.1, PyTorch version 2.2.1. The training 

process was limited with 200 epochs with early stopping implemented, batch size was 

fixed at 32, stochastic gradient descent has been used as an optimization algorithm with 

momentum 0.95 and weight decay coefficient 0,005 and initial learning rate 0.01. 

Default augmentation strategies from YOLOv8 have been applied, and no other 

augmentations have been used. All the samples from datasets have been processed by 

image preprocessing module, being resized to 640 x 640 and enhanced by CLAHE 

algorithm. 

 

3.3 Metrics and experiment results 

 

 The following metrics have been used to assess the performance of the algorithm: 

• Precision, defined as true positives count, divided by the sum of true positives 

and false positives, indicating false-detection rate of the algorithm; 

• Recall, defined as true positives count, divided by the sum of true positives and 

false negatives, reflecting the missed-detection rate of the algorithm; 
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• mApIoU=0.5, defined as the mean average precision (mAp) for all target classes 

across entire dataset with IoU = 0.5 set as an evaluation threshold; 

• Floating point operations count, measured in GFLOPs, reflecting the 

computational complexity of the network.  

Model Precision Recall mApIoU=0.5 GFLOPs 

YOLOv8n 71.02% 66.92% 82.65% 8.1 

YOLOv8s 75.02% 69.78% 84.71% 28.4 

YOLOv8m 76.72% 70.53% 84.92% 78.7 

YOLOv8l 79.24% 73.12% 85.09% 164.8 

[30] 82.71% 80.74% 86.32% 282.05 

[31] - - 85.49% 25.5 

Ours 82.67% 81.02% 86.3% 24.1 

Table 2. Results comparison 

 The proposed model surpassed a much larger YOLOv8l model in precision, 

recall and mApIoU=0.5 metrics, while maintaining smaller size for deployment. 

 

Fig 5. Image from the validation set processed by the baseline YOLOv8 (left) and our 

model (right). The number of misdetections of small dense objects decreased 

significantly. 
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Fig 6. YOLOv8 (left) often missed the targets from underrepresented categories like 

scallop, while our model (right) detected it successfully 

 

3.4 Proposed software 

 

 To better demonstrate our proposed object detection framework results, we have 

built an interactive front-end. Currently, it supports uploading an image, processing it 

with modified YOLOv8 network and yielding object detection results. 

 

Fig 7. The interface of proposed software 
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Fig 8. File uploading dialogue window 

 

Fig 9. Model selection includes pre-packaged versions of YOLO to compare the 

results  
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CONCLUSION 

 

 This paper proposes an intelligent system tailored for Underwater Object 

Detection, addressing the intricate challenges inherent to this task. Through 

implementing a pre-processing module, a series of enhancements to the YOLOv8 

architecture, we have significantly improved the detection performance in underwater 

environments and made the system suitable for deployment. 

 Firstly, to mitigate visibility issues, cope with small densely packed objects, and 

handle target occlusion, we introduced a novel image preprocessing module utilizing 

Contrast Limited Adaptive Histogram Equalization. This preprocessing step enhances 

the contrast of underwater images, thereby facilitating more accurate object detection. 

We enhanced the standard CSPDarknet53 backbone of YOLOv8 with transformer 

block, which improves detection accuracy in challenging underwater conditions, 

especially with the targets of varying sizes. To effectively highlight regions of interest 

within the image, we incorporated attention mechanism in object detection neck 

architecture, which enables the model to focus on crucial features, enhancing the 

overall detection performance. Additionally, we introduced an extra classification head, 

which leverages higher resolution feature maps to capture more information about 

small targets. 

 Through experimentation on the UTDAC2020 dataset, our model achieves 82.67% 

precision, 81.02% recall, and 86.3% mean average precision at IoU=0.5. Notably, our 

framework outperforms the YOLOv8s model by a significant margin, while also being 

15.1% smaller in terms of computational complexity. These results underscore the 

efficacy and efficiency of our proposed framework for underwater object detection 

tasks, demonstrating its potential for real-world applications in underwater 

environments.   
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